AnO(n logn) algorithm for the all-nearest-neighbors Problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn optimal parallel algorithm for the all-nearest-foreign-neighbors problem in arbitrary dimensions
Given a set S of n points in IR D , D 2. Each point p 2 S is assigned a color c(p) chosen from a xed color set. The All-Nearest-Foreign-Neighbors Problem (ANFNP) is to nd for each point p 2 S its nearest foreign neighbors, i.e. the set of all points in Snfpg that are closest to p among the points in S with a color diierent from c(p). We introduce the Well Separated Color Decomposition (WSCD) wh...
متن کاملNotes on the Dynamic Bichromatic All-Nearest-Neighbors Problem
Given a set S of n points in the plane, each point having one of c colors, the bichromatic all-nearestneighbors problem is the task to find (in the set S) a closest point of different color for each of the n points in S. We consider a dynamic variant of this problem where the points are fixed but can change color. More precisely, we consider restricted problem instances, which allow us to impro...
متن کاملNearest Neighbors Problem
DEFINITION Given a set of n points and a query point, q, the nearest-neighbor problem is concerned with finding the point closest to the query point. Figure 1 shows an example of the nearest neighbor problem. On the left side is a set of n = 10 points in a two-dimensional space with a query point, q. The right shows the problem solution, s. Figure 1: An example of a nearest-neighbor problem dom...
متن کاملRandomized approximate nearest neighbors algorithm.
We present a randomized algorithm for the approximate nearest neighbor problem in d-dimensional Euclidean space. Given N points {x(j)} in R(d), the algorithm attempts to find k nearest neighbors for each of x(j), where k is a user-specified integer parameter. The algorithm is iterative, and its running time requirements are proportional to T·N·(d·(log d) + k·(d + log k)·(log N)) + N·k(2)·(d + l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 1989
ISSN: 0179-5376,1432-0444
DOI: 10.1007/bf02187718